
Symmetric and Baroclinic Instability in Dense Shelf Overflows

ELIZABETH YANKOVSKY AND SONYA LEGG

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

(Manuscript received 3 April 2018, in final form 22 October 2018)

ABSTRACT

In this study, we revisit the problem of rotating dense overflow dynamics by performing nonhydrostatic

numerical simulations, resolving submesoscale variability. Thermohaline stratification and buoyancy forcing

are based on data from the Eurasian basin of the Arctic Ocean, where overflows are particularly crucial to the

exchange of dense water between shelves and deep basins, yet have been studied relatively little. A nonlinear

equation of state is used, allowing proper representation of thermohaline structure and mixing. We examine

three increasingly complex scenarios: nonrotating 2D, rotating 2D, and rotating 3D. The nonrotating 2D case

behaves according to known theory: the gravity current descends alongslope until reaching a relatively

shallow neutral buoyancy level. However, in the rotating cases, we have identified novel dynamics: in both 2D

and 3D, the submesoscale range is dominated by symmetric instability (SI). Rotation leads to geostrophic

adjustment, causing dense water to be confined within the forcing region longer and attain a greater density

anomaly. In the 2D case, Ekman drainage leads to descent of the geostrophic jet, forming a highly dense

alongslope front. Beams of negative Ertel potential vorticity develop parallel to the slope, initiating SI and

vigorous mixing in the overflow. In 3D, baroclinic eddies are responsible for cross-isobath dense water

transport, but SI again develops along the slope and at eddy edges. Remarkably, through two different dy-

namics, the 2D SI-dominated case and 3D eddy-dominated case attain roughly the same final water mass

distribution, highlighting the potential role of SI in driving mixing within certain regimes of dense overflows.

1. Introduction

The term ‘‘overflow’’ refers to the buoyancy-driven

descent of dense water formed through cooling, freez-

ing, or evaporation in shallow regions of the World

Ocean, such as continental shelves and marginal seas.

As dense water descends into the ocean interior, typi-

cally as a terrain-following gravity current along slopes

or sills (Shapiro et al. 2003), it undergoes mixing, en-

trains ambient water, and serves as a conduit for irre-

versible exchange and ventilation of the otherwise

relatively quiescent abyssal ocean. Dense overflows

feed intermediate and deep water masses, including

North Atlantic Deep Water and Antarctic Bottom

Water, and thus are substantial contributors to oceanic

circulation and climate (Killworth 1983). Examples oc-

cur worldwide—for instance, in the Antarctic shelves

(Bergamasco et al. 2002), Mediterranean outflow (Price

et al. 1993), Red Sea (Murray and Johns 1997), and

Nordic Seas (Eldevik et al. 2009).

In this work, we focus on perhaps the most striking

case: the Arctic Ocean, where continental shelves

comprise approximately 53% of the total surface area

(Jakobsson 2002) and are subject to intense atmospheric

cooling and sea ice formation with associated brine re-

jection during fall and winter. Highly cold and saline

shelf water is formed, and the resulting overflows are

inferred to ventilate the deepest portions of the Arctic

(Aagaard et al. 1985). Additionally, shelf overflows

strengthen the Arctic halocline—a layer between 50-

and 200-m depth that buffers sea ice from the underlying

warmAtlantic inflow layer, the heat reservoir of which is

capable of melting the entire Arctic ice pack (Aagaard

et al. 1981). As observations of Arctic shelf overflows

are indirect and sparse, numerical modeling remains a

reasonable alternative to studying their dynamics. Be-

cause of the rapidly changing nature of the modern

Arctic, understanding exchange processes and repre-

senting them properly in climate models is crucial.

Present theory, predominantly based on idealized hy-

drostatic simulations with ;1-km horizontal resolutions,
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suggests that bottom friction and mesoscale baroclinic

eddies are the dominant mechanisms in transporting

dense Arctic shelf water downslope and driving mixing

(Gawarkiewicz and Chapman 1995; Gawarkiewicz 2000;

Wobus et al. 2011). However, the role of submesoscale

instabilities, particularly symmetric instability (SI), has

not been examined in the context of overflows. SI is

ubiquitous in both the atmosphere and ocean at fron-

tal zones and has been shown to be highly efficient

in removing kinetic energy from geostrophic currents

(Taylor and Ferrari 2010). A flow becomes unstable

when Ertel potential vorticity q is opposite in sign to the

Coriolis parameter f (Holton 2004):

q5 (f k̂1= ^ u) � =b . (1)

Here, u is the three-dimensional (3D) velocity vector,

buoyancy is defined as b52gr/r0, g is acceleration due

to gravity, and r is potential density referenced to 0dbar.

Depending on the signs and magnitudes of the compo-

nents in Eq. (1) that lead to the instability criterion

fq, 0 being satisfied, various forms of instability are

possible: gravitational, inertial, symmetric, or hybrids

among these (Thomas et al. 2013). SI is characterized by

largemagnitudes of vertical shear and horizontal density

gradients (Hoskins 1974). Given the strong geostrophic

shear and density fronts arising in bottom-trapped

overflows, we hypothesize SI has a significant role in

overflow dynamics. Allen and Newberger (1998) have

theoretically demonstrated the susceptibility of topo-

graphic flows and bottom boundary layers to SI. Further,

there is growing observational evidence emphasizing

the role of submesoscale instabilities and topographically

generated turbulence in global circulation.Ruanet al. (2017)

identify SI-driven mixing within the Antarctic Cir-

cumpolar Current important to the closure of Southern

Ocean overturning. Topographically generated sub-

mesoscale instabilities have also been proposed as a

new route for energy dissipation of geostrophic flows

such as the Gulf Stream (Gula et al. 2016) and the

California Undercurrent (Molemaker et al. 2015).

Here, we apply the nonhydrostatic Massachusetts

Institute of Technology general circulation model

(MITgcm; Marshall et al. 1997) to perform simulations

of Arctic shelf overflows, resolving a wide spectrum of

submesoscale variability. To distinguish between dif-

ferent instability regimes, we consider three progres-

sively complex scenarios: 2D without rotation, 2D with

rotation, and 3D with rotation. Initial temperature and

salinity stratification, as well as the thermal and haline

forcing values, are based on conditions in the Eurasian

basin of theArctic. A nonlinear equation of state is used,

yielding realistic mixing and thermohaline structure.

The primary goal of this work is to identify the physical

processes responsible for transporting dense water

offshore and downslope and to examine how tracer

properties of the overflow and surrounding water are

modified through mixing. Our paper is organized as

follows: section 2 details model setup, section 3 de-

scribes the nonrotating 2D case driven by gravita-

tional instability, section 4 describes the rotating 2D

case dominated by SI, and section 5 describes the

rotating 3D case dominated by baroclinic eddies. In

section 6, we compare the water mass transforma-

tion, entrainment, and energetic pathways between

the rotating 2D and 3D cases. We find that 1) through

different mixing pathways, the two cases attain

roughly the same water mass distribution for a given

forcing, and 2) SI dominates the submesoscale range

of both cases.

2. Model description

The z-coordinate MITgcm (Marshall et al. 1997) is

used to solve the nonhydrostatic, Boussinesq Navier–

Stokes equations in three otherwise identical configu-

rations: 2D with and without rotation and 3D with

rotation. For rotating simulations, we use an f-plane ap-

proximation, with f 5 1:433 1024 s21. In solving the den-

sity equation, a nonlinear equation of state (McDougall

et al. 2003) is used. To parameterize subgrid-scale pro-

cesses, we use a Laplacian viscosity and choose constant

vertical and horizontal viscosity coefficients so that the

grid Reynolds number is near order one, preventing

buildup of energy at the grid scale. The horizontal

viscosity is nH 5 2:5m2 s21, and vertical viscosity is

nZ 5 0:01m2 s21. Explicit salt and temperature diffusiv-

ities are set to zero, and a third-order direct space–time

advection scheme with a flux limiter is utilized, leading

to numerical diffusion. We tested explicit diffusivities of

1/1000 of the viscosity values and found negligible dif-

ferences with the numerical diffusion case. Simulations

are performed to 60days, and the lower forcing cases are

extended to 120 days. The across-shore (x direction)

domain length is 75 km, and depth ranges from 40 to

2500m (Fig. 1). The 3D simulations have uniform to-

pography alongshore (y direction), with a width of

100km—significantly larger than the Rossby deformation

radius [LR 5NH/(pf )’ 5 km; where N is buoyancy fre-

quency and H is depth] so that baroclinic instabilities

are uninhibited. Variable grid resolution is employed

to focus on the shelf/shelfbreak region. Resolution

varies from 10 to 40m in z and from 110 to 130m in x,

and it is 110m in y (in 3D). There is a no-slip bound-

ary condition at the bottom and coastal wall of the

domain, a free surface, a 2-km sponge boundary at the
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offshore edge (damping density to the initial state and

velocities toward zero), and periodic boundary con-

ditions in y. To track shelf water as it is transported

offshore and downslope, a passive tracer is intro-

duced. Its values are set to 1.0 at the surface in the

forcing region and damped to zero within the offshore

sponge boundary at every time step. In 2D, we

perform a sensitivity analysis with doubled and qua-

drupled (both in x and z) resolutions, keeping the

original viscosity values. Additionally, we explore a

more realistic quadrupled-resolution case where the

viscosity values are also decreased by a factor of 4 with

explicit diffusivities.

The model begins from rest, with initial density

stratification based on observations from the Kara and

Barents Sea shelves without the Atlantic inflow layer

(Rudels et al. 2000; Fig. 1b). Both salinity and temper-

ature profiles are monotonic and stably stratified. All

simulations feature a continental shelf that undergoes

temporally constant negative buoyancy forcing at the

surface (Fig. 1a), representative of the Arctic during the

sea ice formation period (Cavalieri and Martin 1994).

This forcing comprises an upward heat flux and down-

ward salt flux representing the effects of brine rejec-

tion. The nominal value of the heat flux is 500Wm22,

corresponding to a buoyancy forcing of approxi-

mately 24.93 3 1026 kgm22 s21, and the salinity buoy-

ancy forcing is approximately 22.92 3 1025 kgm22 s21.

Note the heightened role of salinity forcing in setting

the density of seawater at low temperatures. Various

values of forcing (1/8, 1/4, 1/2, 2, and 3 times the nominal

heat and salt fluxes) are explored to test sensitivity of

the dynamics to forcing magnitude. The buoyancy

forcing in all cases extends for 15 km over the shelf and

decays to zero over a 2-km distance over the shelfbreak;

in 3D, forcing is constant alongshore. This forcing may

represent either a coastal polynya or shelf region expe-

riencing seasonal ice growth.

3. Case 1: 2D, nonrotating

We first consider the simplest idealization of a dense

shelf overflow: a nonrotating 2D system (f 5 0 s21)

where SI and baroclinic instability cannot develop. This

case will serve as a benchmark to identify the roles

of rotation, SI, and baroclinic eddies in guiding Arctic

shelf overflows.

a. Theory

Following initialization of buoyancy forcing at the

surface of the forcing region, dense fluid will begin to

convectively mix downward. We define the density

anomaly in the forcing region Dr as the average density

of the entire water column within the forcing region at

time t (where t is time following forcing initialization)

minus the initial average density of the same region.

As discussed by Gawarkiewicz and Chapman (1995),

the density anomaly is initially expected to increase

linearly as

Dr5Qt/H . (2)

Here,Q is total buoyancy forcing with units (kgm22 s21),

and H is water depth in the forcing region (40m). As

Dr grows, the dense fluid will begin to move offshore

and downslope. We can anticipate an eventual steady

state of zero net buoyancy flux within the forcing region

(of length R5 15km), where the buoyancy flux imposed

at the surface is balanced by offshore flow of dense water

with some characteristic velocity U:

QR;DrUH . (3)

FIG. 1. (a) Model domain, with forcing region (offshore length R 5 15 km) shaded in red; (b) initial profiles of

salinity, potential temperature, and potential density, referenced to the surface (0 dbar).
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b. Results

We consider results from only the first 20 days of the

simulations for the 2D nonrotating cases, as a steady

state is achieved within 10days. Figure 2c shows the

density anomaly Dr as a function of time for the nomi-

nal forcing case. As predicted, originally, the density

anomaly within the forcing region grows linearly

according to Eq. (2). The growth of Dr slows as the

gravitationally unstable dense water is advected off-

shore. A steady state is achieved after 8 days, where the

density anomaly remains constant due to the balance

between buoyancy forcing and offshore advection

[Eq. (3)]. In Figs. 2a and 2b, the passive tracer concen-

tration and offshore velocity are shown. The dynamics

are relatively simple: the overflow propagates down-

slope as a gravity current until attaining a neutral

buoyancy level with the surrounding water and then

moving offshore. There is a compensating return flow

into the shelf region near the surface. The structure

shown in Figs. 2a and 2b is maintained at steady state by

the presence of the sponge boundary at the offshore

edge. In Fig. 3a, we examine the sensitivity of these

dynamics to the buoyancy forcing magnitude. The

overflow is defined as water with a passive tracer con-

centration t$ 0:01. The center of mass in the vertical

Z(x) is computed for overflowwater at every point in the

x direction (Legg et al. 2006):

Z(x)5

ð
t(x)z dz dyð
t(x) dz dy

. (4)

This value is plotted for all of the buoyancy forcing cases

(Fig. 3a). The equilibration depth is defined as the value

of Z(x) offshore from the shelf region. For all forc-

ing cases, the equilibration depth remains relatively

FIG. 2. For the nonrotating 2D case with nominal forcing at 20 days, (a) the depth cross section of passive tracer

concentration and (b) offshore velocity u. (c)A comparison of forcing region density anomaly [Eq. (2)] as a function

of time for the nonrotating and rotating cases (all with nominal forcing).
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shallow, within 300m of the surface, even for the un-

realistically strong 3x forcing case. Although these dy-

namics are capable of ventilating the uppermost layers

and maintaining the Arctic halocline (depth of ;50–

200m), a different mechanism is clearly necessary to

explain the presence of overflowwater within the deepest

portions of the Arctic.

4. Case 2: 2D, rotating

We now examine the effects of adding rotation to the

2D system described in the previous section. Funda-

mentally, this changes the problem so that dense shelf

water is no longer free to propagate directly offshore

and downslope. Rotation confines the shelf water lat-

erally, causing it to remain in the forcing region longer

and attain a greater density anomaly.

a. Theory

As in the nonrotating 2D case, we anticipate the

density anomaly to initially grow as described by Eq. (2).

Similarly, due to gravitational instability, the fluid will

begin to move downslope. In this case, however, rather

than flowing offshore, the dense water will be deflected

to the right by Earth’s rotation and will undergo geo-

strophic adjustment. The Coriolis force acts to steer the

fluid upslope, confining it within the forcing region,

while the pressure gradient forces the fluid downslope.

This leads to predominantly along-isobath flow with an

anticyclonic bottom-intensified geostrophic jet and com-

pensating surface-intensified cyclonic jet (Gawarkiewicz

and Chapman 1995).

In 2D, the dominant mechanism responsible for

breaking geostrophy is bottom friction, imposed in the

model through the prescribed viscosities and no-slip

bottom boundary condition. Ekman dynamics in the

bottom frictional layer has been found to play an im-

portant role in breaking geostrophic balance in the

context of dense water overflows (Shapiro and Hill

1997). As described by Wirth (2009), the bottom fric-

tional layer produces a leakage of dense water out of

the geostrophic current, leading to downslope dense

water transport through the frictional layer—a process

termed Ekman draining. This draining also causes the

FIG. 3. Overflow center of mass in the vertical direction, as a function of offshore distance for

a variety of buoyancy forcing values [Eq. (4)]. (a) The nonrotating 2D cases and (b) the rotating

2D and 3D cases.
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geostrophic jet to be shifted downslope (Manucharyan

et al. 2014). Thus, we expect initial growth of the density

anomaly as in the nonrotating case, followed by geo-

strophic adjustment broken by bottom Ekman dynam-

ics. This will presumably lead to the bottom-intensified

jet of dense shelf water moving downslope, establishing

an alongslope front conducive to the onset and growth

of symmetric instability.

b. 2D symmetric instability

Returning to the definition of Ertel potential vor-

ticity (PV) in Eq. (1) and rewriting it for a 2D system,

we obtain

q5
g

r
0

�
›r

›x

›y

›z

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1

1
2g

r
0

›r

›z

�
›y

›x
1 f

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

. (5)

In the Northern Hemisphere, the criterion for SI is that

q, 0. For stably stratified conditions, ›r/›z is negative,

making term 2 generally positive (the absolute vorticity

is nearly always positive due to f). Thus, in order for q to

be negative, there are two primary options: term 2

takes a negative sign due to localized unstable stratifi-

cation, or term 1 is negative and larger in magnitude

than term 2. The latter case—when horizontal density

gradients (›r/›x) and y velocity shear (›y/›z) yield a large

and negative term 1—is the case of pure SI. The other

case (negative term 2) is seen with gravitational in-

stabilities or hybrid symmetric-gravitational instabilities;

the balanced Richardson number RiB 5 f 2N2/j=Hbj2
(whereN is buoyancy frequency and =H is the horizontal

gradient operator) may be used to differentiate between

these types (see Thomas et al. 2013).

As described by Holton (2004), an equivalent in-

stability criterion is that isopycnals must be locally

steeper than isolines of zonal angular momentum

(M5 fx1 y) for SI to develop. If this is the case, then by

definition, as we move along an isoline of r, angular

momentum will be decreasing:

(›M/›x)
r
, 0: (6)

Then, multiplying Eq. (6) by (2g/r0)›r/›z, we return to

our original criterion that q as defined by Eq. (5) is

negative for an unstable flow.

CONSERVATIVE FLUX FORM OF ERTEL PV

To identify how and where the negative Ertel PV

leading to SI development is generated, we employ the

conservative flux form of the Ertel PV equation as de-

scribed by Marshall and Nurser (1992). We begin with

the mass-weighted Ertel PV, as in Eq. (1):

q5v
a
� =b , (7)

where absolute vorticity is va 5 f k̂1= ^ u. Following

Pedlosky (1992), the rate of change of Ertel PV fol-

lowing a parcel is

Dq

Dt
5v

a
� =Db

Dt
1=b � (= ^ F) . (8)

Here, D/Dt5 (›/›t1 u � =), and F represents frictional

forces given by

F5 n
H
=2
Hu1 n

Z
=2
Zu . (9)

Parameters nH and nZ are the horizontal and vertical

viscosities, respectively;=2
H 5 ›2/›x2jz 1 ›2/›y2jz and=2

Z 5
›2/›z2jx,y are the horizontal and vertical Laplace opera-

tors. We can then express Dq/Dt using a nonadvective

flux (Marshall and Nurser 1992), after noting that vor-

ticity is divergence free (= �va 5 0) and that the curl of a

gradient is zero (= ^ =b5 0):

Dq

Dt
5= �

�
F ^ =b1v

a

Db

Dt

�
. (10)

The continuity equation then leads to the following

conservative flux form of the Ertel PV equation, where

rate of change of Ertel PV is the negative divergence of a

flux vector J:

›q

›t
52= �

�
uq2F ^ =b2v

a

Db

Dt

�
52= � J, or

(11)

›q

›t
1= � J5 0: (12)

Considering a spatially fixed volume of fluid (such as a

model grid box), the time rate of change of Ertel PV in

this volume is therefore the sum of the convergence of

the three terms of J within the box. The first term (uq) is

the advection of Ertel PV into the box, the second term

(2F ^ =b) is frictional generation/destruction of Ertel

PV, and the last term (2vaDb/Dt) is the forcing con-

tribution (the numerical diffusion component is not

considered).

c. Results

Although two complete sets of resolutions were tested

for the 2D rotating case (nominal and doubled), here, we

present the doubled-resolution results. The dynamics

were nearly identical, but SI is better resolved in this

case. The sensitivity analysis and quadrupled-resolution

case with lowered viscosity are presented in the next

subsection. As anticipated, the density anomaly (Fig. 2c)
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reaches values much higher than the nonrotating case

(and even the 3D case due to the lack of advection by

baroclinic eddies). This ultimately allows the overflow to

propagate into the deepest portions of the domain

(Fig. 3b). Figure 4 shows passive tracer distribution and

velocity fields at 20 and 60 days. The alongshore velocity

component y is shown for these times, respectively, in

Figs. 4c and 4g. The bottom-intensified jet is the negative

velocity region (blue) at the bottom of/along the slope

in both cases, while the surface-intensified jet is the

FIG. 4. For the rotating 2D case with nominal forcing, depth cross sections of tracer concentration and u, y, and w

velocities at (a)–(d) 20 and (e)–(h) 60 days.
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positive velocity above. In this convention, negative

(positive) velocity is directed out of (into) the page. The

upper jet is much stronger; bottom friction damps

the lower jet, while there is no surface drag acting on the

upper jet.

As predicted, even by 20days, bottom Ekman dy-

namics has caused the lower jet to be shifted nearly to

the bottom of the slope. The tracer concentration plot

at 20 days shows the thin layer of dense shelf water

produced as a result of the bottom geostrophic jet

leakage and descent. At 20days, the presence of strong

vertical shear in the alongshore velocity along with the

sharp density front adjacent to the slope initiates SI.

By 60 days, u and w velocity fields show diagonal ve-

locity beams characteristic of SI; the resulting small-

scale velocity gradients lead to viscous mixing. The

gradient Richardson number (Ri5N2/j›u/›zj2) was

calculated to test for presence of shear instabilities, but

critical values (0 , Ri ,0.25) are found only in the

bottom boundary layer. Secondary shear instabilities of

SI are not captured at this resolution and viscosity, but

do appear in the quadrupled-resolution case discussed

below. SI-driven mixing is thus responsible for the

offshore spreading of dense water as seen in the 20- and

60-day tracer fields (Figs. 4a,e).

The instability criteria are illustrated in Fig. 5.

Figures 5a–c show isopycnals and isolines of zonal an-

gular momentumM for 20, 30, and 60days. As previously

shown in Fig. 4, at 20 days, a thin density front has

developed along the slope, tilting the isopycnals up-

ward from horizontal. On the other hand, the velocity

field produced by the geostrophic current tilts the an-

gular momentum isolines toward the horizontal, away

from their initial vertical state. This creates near-slope

regions where isopycnals are steeper, meeting the cri-

terion for SI. SI then acts to flatten the steepened iso-

pycnals, mixing water along the length of the overflow

and pushing the density front offshore. However, the

sharp density front is maintained by forcing and con-

tinues to generate SI moving away from the slope. This

is visible in Figs. 5d–f, where the values of Ertel po-

tential vorticity are shown at the corresponding times.

At 20 days, a thin negative PV region is visible along

the frontal edge (at x’ 47km), and at later times, there

are negative beams both at the frontal edge and within

the overflow (similar to the u and w velocity pattern

shown in Fig. 4).

We examine the locations of negative Ertel PV again

in Fig. 6 for days 20 and 60, this time isolating only

negative values for better visualization. The two terms

of Eq. (5) are plotted in Fig. 6 for 20 and 60 days. In

Figs. 6d–f, where the instability is fully developed, we

see that in regions of negative Ertel PV, term 1 must be

negative and larger in magnitude than term 2 (pure SI).

However, for the 20-day case, there is a region at the

downgoing head of the overflow that is gravitationally

FIG. 5. (top) For the rotating 2D case with nominal forcing, depth cross sections of zonal angular momentum and density isolines at (a) 20,

(b) 30, and (c) 60 days. (bottom) Depth cross sections of Ertel potential vorticity at (d) 20, (e) 30, and (f) 60 days.
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unstable (negative term 2). Thus, the dense water ini-

tially flows down the slope as a gravitational instability

driven by the Ekman dynamics of the geostrophic jet,

and as the alongslope density front becomes established,

pure SI develops.

Having identified the presence of SI, we turn to con-

sidering the processes responsible for generating the

negative Ertel PV leading to its onset. In Fig. 7, we ex-

amine Ertel PV fluxes within each grid cell to un-

derstand how/where negative Ertel PV arises. The top

panel shows Ertel PV values at 20 and 60days (Figs. 7a,f).

Below is the total time change of Ertel PV and the in-

dividual forcing, friction, and advection components at

20 and 60days [see Eq. (11)]. Only the negative time

changes are shown for the components—when all values

are plotted, the beams of SI contain extremes of positive

and negative values adjacent to each other (SI acts to

homogenize Ertel PV), as is seen in the total time

change plots (Figs. 7b,g). Clearly, forcing acts to inject

negative Ertel PV at the surface—this is constant in

time. At 20 days, when the overflow has established a

density front along the slope (with water continuing to

move downward along the slope), we see that friction is

generating negative PV adjacent to the slope, extending

up through the shelfbreak (Fig. 7d). The negative region

of Ertel PV initiates SI at 20 days in a beam oriented

along the slope/front, as seen in Figs. 4–6. SI then mixes

water within this negative Ertel PV region, causing

offshore advection of the overflow’s density front and

negative PV beams (Figs. 7e,j).

Finally, we examine the effects that SI has on the ki-

netic energy distribution of the system. In Fig. 8, we plot

velocity magnitudes comprising only the u and w com-

ponents (Fig. 8b) and all three components (Fig. 8d).

The former is dominated by the SI signature, while the

latter is dominated by the geostrophic velocity. We

consider a transect oriented perpendicular to the slope

(direction of SI propagation) near the bottom; this line

is shown in black. We then compute energy spectra

along this line at various times (represented by differ-

ent colors). At 5 and 10days, the overflow has not yet

reached the transect depth (energy values are relatively

small). At 18 days, the overflow first reaches the loca-

tion of the transect, and at 20 days, SI starts to develop

in this region. The spectral characteristic of SI is clearly

visible in Fig. 8a—the initial peak develops at a wave-

length of approximately 300 m, with progressively

smaller peaks developing with time down to the

lowest resolvable wavelengths (40 m). In Fig. 8c, the

y-velocity component dominates the signature, but

nonetheless, some (noisier) peaks are evident below

the 1000-m scale.

d. Sensitivity analysis

To examine the robustness of the observed 2D SI-

driven dynamics, we perform a sensitivity study in which

1) the resolution is increased with viscosity kept con-

stant, and 2) at the highest (quadrupled) resolution, the

viscosity is made 4 times smaller so there is greater scale

separation between the SI and viscous scales, and the

FIG. 6. Locations of negative Ertel PV and the two terms of the Ertel PV equation [Eq. (5)] for the rotating 2D case with nominal forcing

at (a)–(c) 20 and (d)–(f) 60 days. Term 1 is (g/r0)[(›r/›x)(›y/›z)], and term 2 is (2g/r0)(›r/›z)[(›y/›x)1 f ].
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FIG. 7. (a) Ertel PV values for the rotating 2D case with nominal forcing averaged about a 2-day period centered

at 20 days; (b) the likewise-averaged total time evolution of Ertel PV; (c)–(e) negative values of the flux com-

ponents [Eq. (11)]. (f) Ertel PV values averaged near 60 days, with the (g)–(j) corresponding budget total and

negative components.
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dynamics are more realistic. For the latter, tempera-

ture and salinity diffusivities of 1/1000 of the viscosity

values are used (although a zero explicit diffusivity

case was tested and found to have no appreciable

difference). Figures 9a–c show locations of negative

Ertel PV at constant viscosity for the original, dou-

bled, and quadrupled resolutions. At the lowest res-

olution, the beams of SI appear pixelated, as the scale

of the SI is near the grid size. As resolution increases,

the SI becomes better resolved but unchanged in

character. The same dynamics of tilted isopycnals and

angular momentum isolines responsible for generat-

ing the SI are observed in Figs. 9e–g. Other metrics,

including final density distribution and overflow

depth, were also found to be unchanged, indicating

numerical convergence of the results. Once viscosity is

decreased in the quadrupled-resolution case (Figs. 9d,h),

the dynamics acquire a previously uncaptured fea-

ture: secondary shear instability resulting from the

strong velocity gradients set up by the SI. Figure 10

shows a close-up view of the region where SI and its

secondary shear instabilities develop. The velocity

beams and regions of negative PV do not follow such

clean patterns as the higher viscosity case due to the

initiation of shear instability between SI beams. This

is evident in the gradient Richardson number taking

critical values between beams of SI (Figs. 10c,g) and

the noisier signature and rollups of the isopycnals

(Figs. 10d,h). The final density distribution was

nonetheless found to be nearly identical to the higher

viscosity case. Another test was performed in which

the temperature and salinity diffusivities were set

equal to the viscosity values, suppressing overturning

instabilities potentially arising in nonunity Prandtl

number flows (McIntyre 1970). In this case, the height-

ened diffusivity values lead to erosion of the density

gradients within the overflow, allowing the critical

Richardson number criterion to be even more easily

satisfied. Still, analogous dynamics are observed, with

SI developing within the overflow and shear instabil-

ities initiated between SI beams. Thus, SI is shown to

be a robust mechanism for initiating mixing—either in

the form of direct viscous dissipation (lower resolution)

or secondary shear instability leading to viscous dissi-

pation (higher resolution).

5. Case 3: 3D, rotating

We now examine the effects of adding an along-

shore dimension to the 2D rotating system described

in the previous section. The width of the y domain

is 100 km, much greater than the baroclinic Rossby

deformation radius (LR ’ 5km). Whereas in the 2D

rotating case, bottom friction is the dominant mecha-

nism breaking geostrophy, baroclinic eddies now be-

come possible.

FIG. 8. For the rotating 2D case with nominal forcing, velocity magnitudes (b) without and (d) with the along-

shore velocity component, and (a),(c) the corresponding spectra. Spectra are calculated at several times and are

found along the black line oriented normal to the slope in (b),(d).
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FIG. 9. Sensitivity analysis for the rotating 2D case with nominal forcing. (a)–(c) Locations of negativeErtel PV at

60 days for the original, doubled, and quadrupled resolution cases with the original viscosity values (nH 5 2:5m2 s21

and nZ 5 0:01m2 s21). (e)–(g) Corresponding plots of isopycnals and angular momentum isolines. (d),(h) The same

quantities for the quadrupled-resolution case with 4 times smaller viscosity values and explicit temperature and

salinity diffusivities (set to 1/1000 of the viscosity values).
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FIG. 10. For the quadrupled-resolution case with viscosities set to 1/4 of the nominal values and explicit diffu-

sivities (1/1000 of viscosity values): (a) u velocity, (b) locations of negative Ertel PV, (c) Richardson number with

critical values shaded in red, and (d) angularmomentum and density isolines at 40 days. (e)–(h)As in (a)–(d), but at

60 days.
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a. Theory

As before, we anticipate the density anomaly in the

forcing region will initially grow as described by

Eq. (2), the gravitationally unstable fluid will begin

to move offshore/downslope, and geostrophic adjust-

ment will occur. Unlike the 2D rotating case, however,

baroclinic eddies are now free to develop in the along-

shore direction. Such a case was previously studied by

Gawarkiewicz and Chapman (1995), using a coarser-

resolution hydrostatic model. They described these

overflow dynamics in terms of three phases: geostrophic

adjustment; development of baroclinic instability; and

rapid offshore, cross-isobath eddy transport of dense

water. The forcing used in their study was similar to our

nominal forcing case, and the dense water was found to

make its way into the deepest portions of the domain—a

mechanism for ventilation of the abyssal Arctic. We test

whether these dynamics hold for several forcing values

and examine whether the density fronts formed by the

baroclinic eddies as they descend along the slope are

capable of generating SI.

b. Results

Here, we consider results from the nominal buoy-

ancy forcing as well as 1/8 and 2 times nominal forcing

cases. For nominal forcing, the dynamics described by

Gawarkiewicz and Chapman (1995) hold. Initially, the

density anomaly grows as in Eq. (2) (Fig. 2c). There is a

geostrophic adjustment phase and onset of baroclinic

instability; eddies begin to develop within the shelf re-

gion around 5days, growing in alongshore wavelength

until about 20–30 days (longer for 1/8 forcing). This is

evident in the plots of near-surface tracer concentration

at quasi-steady state (Figs. 11c,f,i). When the edge of an

eddy extends over the shelfbreak, dense fluid cascades

along the slope into the deepest portions of the domain.

This is illustrated in Figs. 11b, 11e, and 11h by plotting

the tracer concentration at the lowest point everywhere

FIG. 11. For the rotating 3D case with doubled forcing at 60 days: (a) alongshore-averaged tracer concentrations, (b) tracer values at the

lowest grid point everywhere in the domain, and (c) tracer values near the surface (at depth 20m). The same quantities as in (a)–(c), but for

the (d)–(f) nominal forcing case at 60 days and (g)–(i) 1/8 forcing case at 120 days.
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in the domain. Particularly for the nominal and double

forcing cases, topographically confined baroclinic eddies

produce strong cross-isobath dense water transport

down to 2500-m depth. For these two cases, the abyssal

portion of the domain (x5 40–75km, z#22000m) has

high concentrations of passive tracer as a result (also

shown in Fig. 3b). Note that among the bottom-confined

cases in Fig. 3b, greater forcing magnitude leads to a

slightly shallower center of mass; this is due to increased

mixing and entrainment.

The first column of Fig. 11 shows alongslope-averaged

passive tracer concentration. For the nominal and dou-

ble forcing cases, again tracer is clearly present in the

greatest depths and ismostly confined to the topography—

eddies do not propagate into the interior but remain

bottom trapped, as seen by Gawarkiewicz and Chapman

(1995).However, for the 1/8 forcing case, thewater within

the eddies is less dense, and as a result, eddies are not

bottom confined. Rather, they preserve their 3D struc-

ture and propagate into intermediate offshore depths as

they equilibrate (Fig. 3b). This explains why there is so

little tracer in the abyssal region of the 1/8 forcing

case (Fig. 11h). Thus, forcing conditions consistent

with strong atmospheric cooling and initial forma-

tion of sea ice may produce baroclinic eddies that are

confined to the topography and descend into abyssal

depths. Weaker forcing cases, such as regions cov-

ered by young sea ice still releasing brine, may

contribute to intermediate layer ventilation and

halocline maintenance.

We see that baroclinic eddies in nominal/stronger

forcing cases lead to highly dense water being confined

along the slope, similar to the 2D rotating case. Since in

the 3D cases there too is geostrophic shear and sub-

stantial horizontal density gradients, there is the po-

tential for SI to develop. In Figs. 12a and 12b, the 0.3

isosurface of passive tracer concentration is plotted for

the nominal and 1/8 forcing cases at quasi-steady state.

This differentiates the character of the baroclinic

eddies between the two cases (bottom confined vs in-

termediate). The alongslope density front is well de-

fined for the nominal forcing case, while for the 1/8

forcing case, there are also density fronts that are

produced along the edges of the 3D baroclinic eddies.

Recalling the criterion for SI (q , 0), we plot the cor-

responding regions of negative Ertel PV in the panels

below (Figs. 12c,d). Interestingly, in both cases, there

are well-defined symmetrically unstable regions cre-

ated along the density fronts (corresponding to the

tracer isosurfaces).

FIG. 12. Isosurfaces where tracer concentration is 0.3: (a) the nominal forcing case at 60 days and (b) the 1/8 forcing

case at 120 days. (c),(d) The corresponding isosurfaces of negative Ertel PV.
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In Fig. 13, we examine depth cross sections of tracer

concentration, velocity, and Ertel PV along an x–z

transect. Even with the presence of baroclinic eddies,

these results are qualitatively similar to the rotating 2D

SI-dominated case (Figs. 13a,b). The u velocity field

shows an alternating positive/negative pattern near the

slope, and there is a beam of negative Ertel PV parallel

to the slope (Figs. 13c,d). To further test for the presence

of SI, we plot energy versus wavelength spectra to see

whether a signature similar to the 2D SI-dominated case

is observed. Spectra are calculated for the same transect

shown in Fig. 8 (2D case), but extending in the y di-

rection, thus forming a plane. Velocity fields (u, y,w, and

velocity magnitude) within this plane and their corre-

sponding spectra are shown in Fig. 14. The u velocity

field is dominated by the periodic signature of the baro-

clinic eddies. The maximum energy is found at ;24-km

wavelength, corresponding to the average alongshore

eddy wavelength. The predominantly geostrophic ve-

locity field y has a bottom-intensified jet adjacent to the

slope and compensating surface-intensified jet. The total

velocity field is dominated by the signature of the

y velocity component. However, examining the w ve-

locity field and spectrum, there are three noticeable

peaks (Fig. 14e). One is again at 24 km, and the others

are at 150 and 500m, similar to the SI peaks in the 2D

rotating case. This provides further proof that although

the 3D case is dominated by mesoscale baroclinic

eddies, SI is prevalent at submesoscales. Although fur-

ther work is necessary to isolate the relative roles of

each, we begin to address this question in the following

discussion section.

6. Discussion

In this section, we apply several metrics to compare

the two rotating regimes: 2D SI-driven and 3D baro-

clinic eddy-driven at the nominal buoyancy forcing

magnitude. We begin by addressing how the density

distribution changes in each case. We then calculate an

FIG. 13. Depth cross sections at y5 50 km for the rotating 3D case with nominal forcing at 30 days: (a) tracer concentration, (b) alongshore

velocity, (c) offshore velocity, and (d) Ertel PV.
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entrainment coefficient as defined by Turner (1986),

following the implementation of Legg et al. (2006). Fi-

nally, we compare kinetic energy budgets for the two

systems, similarly to the analysis by Brink (2017).

a. Water mass conversion

Here, we consider how the density distribution of

water within the x 5 20–55-km region (overlying the

continental slope) changes in time for the 2D and 3D

rotating cases. We examine the quasi-steady-state 30–

60-day period, when SI and baroclinic eddies are well

developed. First, the time change of volume (normalized

by the total region volume) for each density class is

computed. This is plotted in the top panels of Fig. 15 for

the 2D case (Fig. 15a) and 3D case (Fig. 15b). Positive

(negative) values indicate an increase (decrease) in

volume at a given density class. The 30–60-day time

change in density distribution for the two cases looks

FIG. 14. For the rotating 3D case with nominal forcing, (b),(d),(f),(h) various velocity components and (a),(c),(e),(g)

their corresponding spectra. Spectra are calculated in the plane formed by the black line shown in Fig. 8 that

extends in the alongshore direction.
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quite similar: there is an increase of higher-density water

and a decrease of lower-density water. Roughly the

same percentage of the region volume and at the same

density classes is changed.

Next, we examine the changes in density distribution

from advection into the region (middle panel in Figs. 15a,b).

Again, the two cases look quite similar, although the

2D results appear more discrete due to lack of along-

slope averaging. If no mixing occurred within the re-

gion (no internal density changes), then the advected

change in density distribution should equal the time

change of density distribution within the region. Thus,

subtracting advective change from time change gives

an indication of which density classes were destroyed and

created through mixing. This is done in the lowest panel

of Fig. 15. Positive values indicate creation of water

within a given density class through mixing; negative

values indicate destruction. In both cases, there is de-

struction of more extreme density classes (very light and

very dense) to create intermediate-density fluid.

Remarkably, even though the dynamics of the 2D and

3D cases are quite different, the resulting mixing creates

and destroys water at the same density levels with ap-

proximately the same percentage of water by volume

being modified. Further, we constructed analogous

histograms for the 1/8, 1/2, and double forcing cases and

found similarity between the 2D and 3D cases. Water

mass modification is a strong function of forcing, but 2D

and 3D cases are very similar at a given forcing. The

histograms for the 1/8 forcing case are shown in Fig. 16

(the 90–120-day period is used because eddies take

longer to develop). This case is particularly interesting;

recalling Fig. 3, the overflow center of mass is different

for the 2D and 3D cases because the 3D eddies are not

bottom confined, although the densest water still cas-

cades along the slope (Figs. 11, 12). The water that in-

trudes into the interior is at its neutral buoyancy level

and therefore does not result in any changes in density

distribution. The strongest water mass modification oc-

curs from nonequilibrated dense water adjacent to the

slope entering the domain (this is also where SI develops

in both 2D and 3D). As a result, the 2D and 3D histo-

gram results are once again nearly the same. Thus, the

2D case where the overflow descends through bottom

Ekman dynamics and then is mixed offshore by SI, and

the 3D case where baroclinic eddies are responsible for

cascading water downslope, result in approximately the

same final water mass distributions at a given forcing.

This is encouraging for parameterization efforts; when

a certain transport mechanism (e.g., baroclinic eddies) is

FIG. 15. Water mass conversion at nominal forcing: (a) rotating 2D SI-dominated case and (b) rotating 3D

eddy-dominated case. Values are integrated over the 30–60-day period for the slope region (20–55 km in x). In

each panel, the total volume of water within each density bin is computed and then divided by the volume of

the region. (top) The time change of density distribution within the region, (middle) the distribution of net

advected water into the region (positive indicates advection into the region), and (bottom) the difference

(positive indicates creation).
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suppressed, the inherently unstable density distribution

leads to a stable final state that is invariant to the par-

ticular mixing pathway.

b. Entrainment coefficient comparison

We next compare the entrainment coefficient as for-

mulated by Legg et al. (2006) for the 2D SI-dominated

and 3D baroclinic eddy-dominated cases. The overflow

water is considered to be all water having a passive

tracer concentration t$ 0:01, covering cross-sectional

area A. The offshore transport as a function of x [T(x)]

of dense water by the overflow is defined as

T(x)5

ð
A

u dy dz , (13)

where u is offshore velocity as before. The entrainment

coefficient aE is then

a
E
(x)5

d

dx
T(x)

Lu
, (14)

where L is the length of the interface between the

overflow and ambient water in the offshore direction,

and u5 (1/A)
Ð
A
u dy dz is the average offshore velocity

within the overflow.

The entrainment coefficient as a function of x is

plotted in Fig. 17 for the nonrotating 2D case, the

rotating 2D case, and the rotating 3D case (all at the

same forcing values). In addition, the 1/8 forcing case in

3D is shown as a dotted black line. From this figure, it is

evident that the magnitudes of entrainment in the 3D

cases are significantly larger than the 2D cases. In 2D,

the nonrotating and rotating cases have roughly the

same, near-zero entrainment coefficient values. The 2D

nonrotating results may be explained by cessation of the

entrainment when the plume’s neutral buoyancy is

reached. In the 2D rotating case, there is clearly still

mixing in spite of the small entrainment coefficient

values (as shown earlier, there is a roughly equal amount

of water mass conversion through mixing in the 2D SI-

driven case and the 3D eddying case). As seen in the

velocity field (Fig. 4), SI-driven mixing gives rise to both

up- and downslope motion. However, this mixing is

aligned with the topography and therefore does not in-

crease in the offshore direction. Once baroclinic eddies

are permissible in 3D, entrainment coefficient values

become much larger (with the exception of the negative

values, produced as the eddies reach the bottom and

their offshore transport lessens). As discussed in the

next section, kinetic energy is being continuously sup-

plied to the growing eddies. Although the eddy-driven

transport is adiabatic, eddies create vigorous stirring and

initiate SI and mixing offshore, leading to high entrain-

ment coefficient values.

FIG. 16. Water mass conversion for 1/8 forcing: (a) rotating 2D SI-dominated case and (b) rotating 3D eddy-

dominated case. Values are integrated over the 90–120-day period for the slope region (20–55 km in x). (Same

quantities as Fig. 15.)
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c. Energetics

Neglecting the viscous transport term (here, negligi-

ble when alongshore averaged), the kinetic energy

budget for a Boussinesq fluid may be written as

›

›t
(KE)52= � (uKE)2= � (uP/r

0
)

2 n
H

"�
›u

›x

�2
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�
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#
2 n
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�
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›z

�2

1wb ,

(15)

where KE5 (1/2)(u2 1 y2 1w2),P is pressure, nH and nZ
are the horizontal and vertical viscosities, and w is ver-

tical velocity. We calculate each term in Eq. (15) and

alongshore average and integrate in z for each dx slice to

obtain energetics as a function of offshore distance x.

Thus, the temporal change of kinetic energy (KE) is

given by the sum of an advective and pressure flux,

conversion of KE to dissipation (DISS) by viscosity, and

conversion of potential energy (PE) to KE. The latter

two are the creation and destruction terms, with integral

forms as follows:

C
PE/KE

5
1

A

ðL
0

ð0
2H

(wb) dz dx , (16)
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Here, an overbar denotes alongslope averaging; A is

fluid area in the xz plane of length L and height H over

which the conversion is computed. We calculate the

terms given by Eqs. (16) and (17) and the other likewise-

integrated terms of Eq. (15) for each grid column of

length dx. Additionally, we calculate the residual be-

tween the time change and the right-hand side of

Eq. (15). These results are plotted in Fig. 18 for the 2D

rotating case (Fig. 18a) and 3D rotating case (Fig. 18b);

corresponding topography is shown in the top panel,

10-day results are the middle panel, and 60-day results

are below. The terms are averaged in time over 2.5 days

to obtain a less noisy representation of the energetics.

At 10days, baroclinic and symmetric instabilities in

the two cases have not yet fully developed, but geo-

strophic adjustment has commenced. There are high

values of PE toKE conversion in the shelf region in both

cases, caused by the convective descent of the dense

water from the forcing region and formation of the

geostrophic jets. The conversion of KE to DISS has a

well-defined peak in both cases around 13 km in x, cor-

responding to the location of the surface-intensified

geostrophic jet and resulting shear. Overall, the two

cases appear similar due to the lack of developed SI and

eddies at 10 days.

When considering the 60-day plots, differences be-

tween the two cases emerge. The PE to KE conversion

plot is still similar between the two, with a peak pro-

duced by the surface-intensified geostrophic jet around

25km. However, for the 2D SI-dominated case, the

conversion of KE to DISS follows the curve for the

conversion of PE to KE very closely; the flux and time

change terms are very small. This is not at all the case for

the 3D baroclinic-eddy-driven case; here, the conversion

of KE to DISS is much smaller in magnitude than the

conversion of PE to KE. In other words, the potential

energy is being used to feed the baroclinic eddies that

are still growing (even at 60 days); kinetic energy of the

system is being increased, as is evident from the positive

time change term. The difference in KE dissipation

highlights the contrasting mixing pathways of the 2D

and 3D cases. The growing KE of the mesoscale eddies

leads to increased stirring and volume entrainment

moving offshore. In 2D, mixing primarily occurs by

submesoscale alongslope SI acting to efficiently dissi-

pate the kinetic energy of the geostrophic jet.

d. Relevance of results to the real ocean

Though the simulations presented in this work are

idealized process studies, the results are relevant to

numerous real-world flows. As stated previously, initial

conditions and forcing values are based on observations

obtained in the Kara and Barents Seas. Coastal regions

FIG. 17. Entrainment coefficient aE(x)5 [(d/dx)T(x)]/Lu (Legg

et al. 2006) plotted as a function of offshore distance for the three

model configurations at nominal forcing, as well as the 3D case with

1/8 forcing.
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in the Eurasian and Canadian basins are similarly

stratified and forced during the fall and winter seasons,

both in the initial sea ice formation phase and for ice-

covered regions experiencing brine secretion (Cavalieri

and Martin 1994). The continental slope magnitude is

based on a Kara Sea transect (Rudels et al. 2000), with

an average of 3.58 andmaximum of 88. Slopes around the
Arctic are of similar scale (Jakobsson 2002). Although

Arctic shelf widths reach hundreds of kilometers (our

shelf was only 15 km), the majority of the dynamics oc-

curs as the relatively homogeneous dense water moves

off the shallow shelf and undergoes geostrophic adjust-

ment. We hypothesize the dynamics will be fundamen-

tally unaltered for a larger shelf, although the presence

of dense water at the shelfbreak may be more tran-

sient and diluted. In the Antarctic, continental slopes

similarly average 38–68, and forcing conditions initiat-

ing dense shelf overflows (with vertical thicknesses

;300m or less) have been observed, particularly in the

Ross and western Weddell Seas (Baines and Condie

2013). Overflows forced by evaporation at intermedi-

ate latitudes may also be susceptible to analogous in-

stability dynamics. More broadly, these results add to

the growing body of evidence emphasizing the role of

submesoscale and frontal instabilities in the dissipation

of balanced, geostrophic flows.

7. Summary

We have revisited the climatically significant prob-

lem of overflow dynamics, resolving the submesoscale

range of motion. We focus our study on the vast Arctic

shelves and examine three progressively complex

scenarios—nonrotating 2D, rotating 2D, and rotating

3D—corresponding to different overflow regimes. The

nonrotating 2D case behaves according to known the-

ory. Gravitationally unstable water descends along the

slope until reaching a level of neutral buoyancy within

the uppermost 300m of the water column, even for

extreme forcingmagnitudes. However, once rotation is

added, the problem changes drastically; rotation con-

fines shelf water laterally, allowing it to attain a larger

density anomaly and become susceptible to a variety

of instabilities.

We have identified novel dynamics in the rotating

cases—in both 2D and 3D, the submesocale range is

FIG. 18. Alongshore-averaged and depth-integrated terms of the kinetic energy budget according to Eq. (15) [with conversion terms

described by Eqs. (16) and (17)]. The rotating (a) 2D SI-dominated case and (b) 3D eddy-dominated case with nominal forcing at 10 and

60 days.
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dominated by symmetric instability. In the 2D case,

dense water flows offshore and undergoes geostrophic

adjustment, forming a bottom-intensified jet and com-

pensating surface-intensified jet. Ekman draining causes

downslope descent of the lower jet, forming a highly

dense alongslope front. SI is initiated, leading to vigor-

ous mixing within the overflow. This regime applies for

Arctic overflows in which the horizontal (alongslope)

scales are below the baroclinic Rossby radius of de-

formation. In the 3D rotating case, geostrophic balance

is broken by the onset of baroclinic instability, which

leads to rapid downslope eddy transport of dense water.

The character of the eddies is determined by forcing:

strong forcing produces bottom-trapped eddies, while

weak forcing (1/8 of the nominal value) leads to less-

dense eddies propagating into the interior and attaining

neutral buoyancy at intermediate depths. Although the

3D case is dominated by mesoscale eddies, there too is a

strong signature of SI alongslope and at eddy edges.

Remarkably, we find that though they have very dif-

ferent dynamics, the rotating 2D and 3D cases lead to

roughly the same final watermass distribution by density

class. This result holds for all of the examined forcing

magnitudes. In both regimes, buoyancy forcing cases

corresponding to newly forming sea ice and strong at-

mospheric heat loss produce overflows ventilating the

abyssal Arctic, while weaker forcing cases such as ice-

covered regions that secrete brine slowly ventilate in-

termediate waters. For a given forcing magnitude,

mixing in the SI-driven (2D) case is roughly the same as

that in the eddy-driven (3D) case. In 2D, the mixing

occurs through SI homogenizing negative Ertel PV re-

gions, while in 3D, mixing occurs through the growth

and vigorous volume entrainment initiated by baroclinic

eddies. This is encouraging from the standpoint of

modeling: magnitude of forcing, rather than model

constraints, is the dominant factor determining final

water mass characteristics. Although this study was

idealized with respect to the Arctic, we believe the

physical insights gained apply to a variety of overflow

scenarios within the continental shelf regions of the real

Arctic Ocean and worldwide. In subsequent work, we

hope to study the contribution of SI to water mass

modification and mixing relative to baroclinic eddies

and address the need for its representation in larger-

scale models.
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